
The WebSocket Protocol

IETF 80 HyBi WG

Takeshi Yoshino

tyoshino at google dot com



Background

• Evolution of web apps

– Dynamic and real-time application

– Webmail, Chat, word processing, etc.

• HTTP is not designed for web apps

– Large overhead

– Hanging-GET is necessary for real-time server push



WebSocket is (1)

• New protocol over TCP

– Opening handshake

• HTTP-esque request and response

– Newly defined WebSocket frame

• New API for JavaScript

var ws = new WebSocket("ws://example.com/foobar");

ws.onmessage = function(evt) { /* some code */ }

ws.send("Hello World");

…



WebSocket is (2)

• Intended to replace hanging-GET based 
bidirectional channel
– Two XMLHttpRequest One WebSocket

• Full duplex

• Smaller overhead

• Fewer TCP connection

• Simpler API



Other Requirements

• Coexist with HTTP on the same port

– Use 80/443 which are rarely blocked

• Work with HTTP infrastructure

– Proxy and firewall

• Allow cross origin connection

– http://example.com/foo.js establish WebSocket to 
ws://example.org/chat

• Fit JavaScript programming model



Security Concern

• Cross protocol attack

– Abuse of WebSocket on browser

• By malicious JavaScript

• To attack HTTP server, cache, …

– Abuse of XMLHttpRequest

• To attack WebSocket server

• Port scanning



Protocol Overview

• User-agent establishes TCP

– Order, reliable transmission, congestion control
are guaranteed by TCP

• Opening handshake

• Exchange WebSocket frames

• Closing handshake



Opening Handshake (1)
Example

• Client
sends

• Server
replies
with 

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Sec-WebSocket-Origin: http://example.com

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=



Opening Handshake (2)

• HTTP compliant request/response format
– Can go through intermediaries for HTTP

– Code for HTTP can be diverted

• “GET /chat HTTP/1.1”
– Requested resource is “/chat”

• “Host: server.example.com”
– Enables name virtual hosting

• “Upgrade” and “Connection” header
– Tells the server to switch to WebSocket protocol



Opening Handshake (3)
Peer Validation

• Check if the peer is WebSocket ready
– Only ones understand WebSocket can generate valid 

Sec-WebSocket-Accept

• Challenge from client : Sec-WebSocket-Key
– BASE64(Random 16 octets)

• Response from server : Sec-WebSocket-Accept
– BASE64(SHA-1(concat <Key> and <GUID>))

– SHA-1 is common, verifiable

– GUID is uniquely defined for WebSocket
– “258EAFA5-E914-47DA-95CA-C5AB0DC85B11”



Opening Handshake (4)

• Sec-WebSocket-Origin
– Optional for non-browser clients

– Server MAY check

• Sec-* prefix
– Prevents cross protocol attack with XHR

• Cookie/Set-Cookie as well as HTTP

• Sec-WebSocket-Extensions and
Sec-WebSocket-Protocol
– Discuss later



Framing (1)
Requirements

• Support binary payload

• Single framing for simplicity

– HyBi 00 used 0x00 <UTF-8> 0xFF for text frame

 Use payload length field for all type

• Some fields for frame type, extensibility



Framing (2)
Frame Diagram

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-------+-+-------------+-------------------------------+

|F|R|R|R| opcode|R| Payload len | Extended payload length |

|I|S|S|S| (4) |S| (7) | (16/63) |

|N|V|V|V| |V| | (if payload len==126/127) |

| |1|2|3| |4| | |

+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +

| Extended payload length continued, if payload len == 127 |

+ - - - - - - - - - - - - - - - +-------------------------------+

| | Extension data |

+-------------------------------+ - - - - - - - - - - - - - - - +

: :

+---------------------------------------------------------------+

: Application data :

+---------------------------------------------------------------+



Framing (3)
Requirements for Length Field

• Small overhead for small payload

– Consider power sensitive mobile device

– Short size like 8 bit is preferred

• Less fragmentation for large data

– Big range like 64 bit is preferred



Framing (4)
7/16/63 Encoding

• At least 7-bit payload length field
• 2nd octet of header = RSV4(1), payload_len(7)

• Extended payload length field may follow

• 0 <= payload_len <= 125
– 7 bit

• 126 <= payload_len <= 2^16-1
– 7 bit + 16 bit extended header

• 2^16 <= payload_len <= 2^63-1
– 7 bit + 64 bit extended header



Framing (5)
7/16/63 Encoding

• 63 bit value + 1 bit padding =
64 bit occupation

• Limit is set to 2^63-1 since some platform 
doesn’t support unsigned 64-bit integer

• Example
– 5  0x5

– 256  0x7E 0x0100

– 65536  0x7F 0x0000000000010000



Framing (6)
Opcodes

• 0x0 Continuation frame

• 0x1 Connection close

• 0x2 Ping

• 0x3 Pong

• 0x4 Text frame

• 0x5 Binary frame

• 0x7-0xF Reserved



Framing (7)
Room for Extension

• 4 reserved bits in header

– RSV1, RSV2, RSV3, RSV4

• 9 undefined opcodes 0x7-0xf

• Extension data field



Framing – Open Issue

• Single opcode for control frames or
Multiple opcodes for each control frames

– Single control opcode
1 leading octet of payload is control type

• Easy to tell intermediaries the frame cannot be 
fragmented

– Define the range of control opcodes

– Multiple opcodes for each control type

• How to specify extension field length



Ping and Pong

• Built-in ping

– For keep alive, health check, …

• Alice send ping control

• Bob MUST reply with pong control
with the same payload as received ping



Frame Masking (1)
Background

• Security concern raised by Adam Barth

Victim 
browser

Attacker 
controlled 

host

Malicious
script

Victim 
HTTP 
cache

<WebSocket opening handshake string>

…some bytes…

GET /foobar.js HTTP/1.1

Host: example.com

…

Malicious data

…



Frame Masking (2)
Background

• Intermediaries designed for HTTP may be 
poisoned

• Mask client-to-server frame

– Prevent attacker controlled byte sequence from 
going over wire



Frame Masking (3)
Current Masking Method

• For each frame

– Get 4 octets from cryptographically secure random 
number generator

– masked_data[i] = clear_text[i] XOR mask[i % 4]

– send mask and masked_data to server

Mask Mask Ma

Clear text

XOR

Masked data

Mask Masked data



Frame Masking – Open Issue

• Mask frame or mask payload

– In-frame masking is less secure?

– Making whole frame is bad for intermediaries?

• Mask only client-to-server or both direction

– Debugging is easier if symmetric

• Mask extension field or not



Fragmentation (1)

• Enable sending part of message separately

– Useful for dynamically generated contents

– Flush partial data to vacate buffer

• Similar concept as HTTP chunked encoding

• Planned to be used for multiplexing

• Message : complete unit of data on app level

• Frame : network layer unit



Fragmentation (2)

• Use FIN bit and “Continuation” opcode

• Example
– For message "abcdefg..."

– Frame1
• !FIN, opcode=<original opcode>, payload=abc...

– Frame2
• !FIN, opcode=CONTINUATION, payload=ijk...

– Frame3
• FIN, opcode=CONTINUATION, payload=stu...



Extension (1)

• Negotiate on opening handshake

• Modify payload or even whole frame

• Attach some information

– as RSV1-4, new opcode or
per-frame extension data field



Extension (2)
Negotiation Example

• Applied in order the extensions are listed

• Server accepts part of requested extensions

Sec-WebSocket-Extensions: deflate-stream

Sec-WebSocket-Extensions: mux; max-channels=4;

flow-control, deflate-stream

Sec-WebSocket-Extensions: x-private-extension



Extension – Open Issue

• How to assign reserved bits and opcodes

• How multiple extensions interact

• Intermediaries are allowed to join/split 
fragmented frames with extension? How?

• Extension may consume unused opcodes?



Subprotocol

• Client may request subprotocol by
Sec-WebSocket-Protocol header

• Server choose one from requested 
subprotocols and echo back it to accept



Closing Handshake (1)
Background

• WebSocket is full-duplex

– Peer may send a frame anytime

• RST hazard

– A peer may close socket without reading out all 
received data from TCP stack

– Cause sending RST

– Peer may miss some data due to RST

• shutdown(SHUT_WR) is not available everywhere

• Implement safe-close on WebSocket layer



Closing Handshake (2)

• Alice sends close frame to Bob

• Bob sends close frame to Alice

• Bob closes socket

• Alice closes socket

• A peer can close TCP once
both received and sent close

Last data

Close control

Close control

TCP FIN

TCP FIN

Alice Bob



Closing Handshake (3)

• What this assures for Alice

– Alice received all data sent from Bob

• wasClean parameter of onclose handler

– It's safe for Alice to close TCP connection

• No more data coming from Bob  No RST hazard

• What this DOES NOT assure for Alice

– Bob received all data sent from Alice

• This requires 3-way close handshake



Status Code

• First two octets of close frame

• Not to be confusing, 4-digit code is used
– while HTTP uses 3-digit code

– Predefined codes
• 1000 Normal closure

• 1001 Peer is going away

• 1002 Protocol error

• 1003 Received unacceptable data

• 1004 Too large message

• UTF-8 string may follow



Compression
Built-in extension - deflate-stream
• Applies 1951 DEFLATE to whole stream

• Simple

– No negotiation parameter

– No reserved bits, opcode, extension data

• Included for now to make sure we have at 
least one compression available



Compression – Open Issue

• Compress stream, frame or payload

– Stream compression requires recompression when 
join/split/insert/filter frames

• More flexibility

– Per-frame compression parameters

– More compression algorithms



Gluing with JavaScript

• W3C The WebSocket API

– http://dev.w3.org/html5/websockets/

• WebSocket class

– send(), close()

– onmessage, onclose, onopen, onerror

• To prevent WebSocket from being abused for port 
scanning, no detail about error occurred during 
opening handshake will be reported

http://dev.w3.org/html5/websockets/


Gluing with JavaScript – Open Issue

• Specify how to handle error

– If length field is bad : blah blah

– If RSV1 is 1 : blah blah

– Pass more information to onerror handler

• As well as detailed status code now we have

• Interface for binary data handling

– ArrayBuffer, Blob, …

– Ian Hickson is working on this



Other Open Issues

• Keep alive

– How to maintain underlying TCP connection

• For long-living WebSocket

• Have NAT, etc. remember it

• Ping and pong

– How to determine ping/pong interval

• On opening handshake or by some control frame
– How intermediaries interact



Other Open Issues

• HTTP compliance

– “Fail on non-101” doesn’t comply HTTP

– Support redirection

• Possible security issue

• Useful for load balancing

– Reuse, retry of connection after handshake failure

• Multiplexing design


